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Lyapunov instability of rigid diatomic molecules via diatomic potential molecular dynamics
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We develop a molecular dynamic method to evaluate the full Lyapunov spectrum for two-dimensonal fluids
composed of rigid diatomic molecules. The Lyapunov spectra are obtained for 18 rigid diatomic molecules for
various bond lengthsd(1023<d<1.0) in two dimensions with periodic boundary conditions, and interacting
with Hoover and Weeks-Chandler-Anderson short-range repulsive forces. The general trends and characteristic
features of the Lyapunov spectra are examined for both potentials. Our results are compared with those
obtained from I. Borzsa´k et al. @Phys. Rev. E53, 3694 ~1996!#, whose model uses the Lagrange multiplier
method.@S1063-651X~98!06612-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The spectrum of Lyapunov exponents describes the m
exponential rates of divergence and convergence of ne
boring trajectories in phase space, and thus provides us
information characterizing the degree of chaos present
dynamical system. During the past decade, Lyapunov spe
for simple fluids have been investigated thoroughly throu
numerical simulations and theoretical studies@1–6#. Progress
has been made to the point that the second law of therm
namics and paradoxical macroscopic irreversibility can
explained with these quantities@7,8#. Furthermore, their re-
lation to transport coefficients offers a new basis for desc
ing irreversible processes@4#. They are characterized i
terms of a set of exponents$l i%,i 51, . . . ,6N, ordered from
the largest to the smallest. The largest exponentl1 describes
the rate of growth of trajectory separation in phase spa
The sum of the largest two exponents,l11l2 , gives the rate
of growth of area defined by three moving trajectories.
nally, the sum of the firstn exponents,( i 51

n l i , indicates the
rate of expansion or contraction in phase-space obj
spanned byn degrees of freedom. The Kolmogorov entrop
hk5(l.0l, given by the sum of the non-negative expone
@9#, describes the rate of divergence of the coarse-gra
phase volume. The Lyapunov dimension, following the co
jecture of Kaplan and York@8#, is a lower bound on the
fractal dimension of the associated strange attractor of
chaotic system.

Rigid diatomic molecules are often described by ha
dumbbells in shape, interacting with the so-called diatom
potential@10#. Anisotropic fluids reflect the physical trans
tion from uncoupled translational and rotational motions
fully coupled rototranstional states@11#. Compared with the
exhaustive studies on the Lyapunov instability for mon
atomic molecular dynamics, those for the diatomic molecu
model have been rare. Dellago and Posch studied
Lyapunov instability associated with the pure orientatio
order-disorder transition for the extendedXY model both in
equilibrium and nonequilibrium steady states@12#. For the
hard dumbbells of two-dimensional hard disk fluids, M
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anović, Posch, and Hoover@11# studied the physical transi
tion from uncoupled motions between translation and ro
tion to coupled states. Borzsa´k, Posch, and Baranyai@13#
evaluated the spectra of Lyapunov exponents for rigid
atomic molecules with Weeks-Chandler-Anderson repuls
potential. They performed simulations for rigid homonucle
diatomic molecules with two interaction sites separated b
distanced along the molecular axis, and interacting with th
repulsive Weeks-Chandler-Anderson potential. Their m
lecular dynamics simulation model for diatomic molecul
was a straightforward extension of the monoatomic simu
tions augmented with constraint forces keeping the bo
lengthd for each molecule fixed. However, due to unavo
able computer-precision errors, each bond lengthd deviates
from the ‘‘fixed’’ value as the numerical integratio
progresses. The propagation of a computational error co
be reduced by making the time stepDt sufficiently small.
But this procedure makes the computation inefficient. A
though their model was able to explain many interest
properties of diatomic molecular systems, the developm
of a more general model for diatomic systems is required
study the systems with both repulsive and attractive pot
tials and to extend the systems of nonequilibrium diatom
fluids.

In the present study, we calculate the Lyapunov spe
for Hoover and Weeks-Chandler-Anderson repulsive
atomic potentials. As suggested in the term ‘‘rigid d
atomic,’’ the position, rotational angle between the sepa
tion vector of molecular axis with an arbitrary fixed directio
of the plane, and their conjugate momenta$R,Q,P,PQ% pro-
vide the full representation of the states of the system.
use the Lagrangian formalism to derive the classical mot
equations;L5K2F, whereK is the kinetic energy andF
the potential energy. For a two-dimensional rigid diatom
system, the kinetic energyK depends on each molecule
center-of-mass velocity and its angular velocity. The to
intermolecular potential energyF is taken to be pairwise
additive of interactions between the sites on different m
ecules separated by a distancer. In Sec. II we describe ou
diatomic potential model and derive the motion equatio
7243 © 1998 The American Physical Society
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and their linearized motions for the evaluation of t
Lyapunov exponents. Our results are presented and
cussed in Sec. III. The conclusion follows in Sec. IV.

II. DESCRIPTION OF THE MODEL

Simulations were performed for two-dimensional clas
cal systems consisting ofN rigid homonuclear diatomic mol
ecules in a volumeV and with periodic boundary conditions
Each molecule consists of two homonuclear atoms, e
massm, separated by a rigid distanced along the molecular
axis. The interaction between any given pair of moleculei
and j is characterized by the diatomic potentialc i j @10#:

c i j 5 (
n51

4

f~r n!, ~1!

wheref(r ) is a pairwise potential. Ther n are the distances
between the center-of-force associated with the nonbon
atoms of any two molecules. Here we consider the follow
short-range purely repulsive soft potentialsf: ~a! the
Weeks-Chandler-Anderson potential to resemble the h
sphere model but no second derivative at the cutoff dista
@2#,

f~r !5H 4eF S s

r D 12

2S s

r D 6G1e, r ,21/6s

0, r>21/6s,
~2!

where r min521/6s is the location of the minimum of the
Lenard-Jones potential;~b! the Hoover potential with the
cutoff radius,r 5s, at which the first three derivatives van
ish @3#,

f~r !5H 100eF12S r

s D 2G4

, r ,s

0, r>s.

~3!

Without loss of generality, reduced units are used in t
paper for simple expression, for whiche, s, and the atomic
massm ~molecular mass 2m) are unity.

Figure 1 shows a schematic representation of the diato
potential model in two dimensions.Ri and Q i denote the
position vector of thei th molecular center of mass and a

FIG. 1. Diatomic potential model used to simulate homonucl
diatomic fluids. The four pair interactions between neighbor
molecules are indicated by dotted lines. For the first moleculeO
represents the position of the center of mass,P1 andP2 the atomic
positions and their interaction centers for the point mass atoms.
same with primes, for the second molecule. The molecular orie
tion angles are defined byQ1 andQ2 , respectively, measured rela
tive to the vector connecting the centers of mass with some a
trary direction.
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gular coordinate, respectively. Then, the positions of the t
atoms belonging to thei th molecule are

r i ,k5Ri2~21!kIS, ~4!

where i 51,2, . . . ,N and k51,2. r is the Cartesian coordi
nates (x,y) t of each site andR is the corresponding mol
ecule’s center of mass vector (X,Y) t. S is a column vector
written as@cos(Qi),sin(Qi)#

t. Superscriptt means the matrix
transposition.I is the (d/2) times 232 identity matrix. Then,
the bond lengthd for each molecule,d25(r i ,12r i ,2)

2, is
naturally fixed without any constraint.

The kinetic energy of the two-dimensional system is t
sum of a translational part and a rotational part, and is w
ten as

K5(
i 51

N

@Ṙi
21~d/2!2Q̇ i

2#. ~5!

The potential energy is

F5(
i 51

N

(
j Þ i

c i j . ~6!

We denote byFi and Ni the total force and the tota
torque, respectively, acting on the moleculei due to all the
other interacting molecules. The equations of motion are

$Ṙi5Pi /2; Q̇ i5PQ i
/I; Ṗi5Fi ; ṖQ i

5Ni%, ~7!

whereI is the moment of inertia. We note that, extending o
method, a flexible diatomic molecular system between t
sites can be described by merely adding a restoring pote
in Eq. ~1!. We also note that nonequilibrium steady sta
can be obtained by treating temperature and heat reser
explicitly in the equations of motion~7!.

For the evaluation of the Lyapunov exponents it is use
to represent the state of the system by the 6N-dimensional
state vector G5$Xi ,Yi ,Q i ,Ẋi ,Ẏi ,Q̇ i%,i 51, . . . ,N. The
equation of motion for the state vectorG(t) is conveniently
written as an autonomous system of the first-order differ
tial equations,

Ġ~ t !5G„G~ t !…, ~8!

where G(t) refers to a point in phase space. Its soluti
defines a flowG(t)5F t„G(0)… in phase space. We conside
two trajectories separated initially bydG(0) having a vector
of norm s:

G8~0!5G~0!1dG~0!. ~9!

From this equation we can define a finite-length tang
vector att50,

d~0!5 lim
s→0

G8~0!2G~0!

s
, ~10!

associated with an initial perturbationG8(0)2G(0) of the
reference trajectory in phase space. As time goes on,
perturbation develops intoG8(t)2G(t) and the associated
tangent vector becomes

r
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TABLE I. The smallest positive Lyapunov exponentl51 and three vanishing~nonnegative! Lyapunov
exponents (l52,l53,l54) for the seven bond lengths,d/s. Weeks-Chandler-Anderson results are placed
the left sides and Hoover potential results on the right sides in the parenthesis. All quantities are g
reduced units. The thermodynamic information of the corresponding systems appears in Table II an
III, respectively.

Exponents number l51 l52 l53 l54

d50.001 ~0.327, 0.208! ~0.014, 0.001! ~0.000, 0.000! ~0.000, 0.000!
d50.2 ~0.477, 0.493! ~0.009, 0.002! ~0.000, 0.000! ~0.000, 0.000!
d50.5 ~0.252, 0.449! ~0.005, 0.002! ~0.000, 0.000! ~0.000, 0.000!
d50.6 ~0.180, 0.382! ~0.012, 0.001! ~0.000, 0.000! ~0.000, 0.000!
d50.7 ~0.113, 0.312! ~0.004, 0.001! ~0.000, 0.000! ~0.008, 0.000!
d50.8 ~0.078, 0.243! ~0.013, 0.002! ~0.000, 0.000! ~0.000, 0.000!
d51.0 ~0.040, 0.170! ~0.000, 0.000! ~0.000, 0.000! ~0.005, 0.000!
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d~ t !5 lim
s→0

G8~ t !2G~ t !

s
. ~11!

The stability of the reference trajectory due to the init
infinitesmal perturbation is determined by this change
length of the vectord(t) at time t. Consequently,d(t) may
be viewed as a vector comoving and corotating with
phase flow in the immediate neighborhood of the ph
point. The equations of motion ford(t) are obtained by lin-
earizing the original motion equations~7!,

ḋ~ t !5M „G~ t !…d~ t !1O„@d~ t !#2
…, ~12!

where M (G)5@]G(G)/]G# is the stability matrix. It is a
local matrix, depending on the phase pointG. With the time
ordering operatorT, the formal solutiond(t) can be ex-
pressed as

d~ t !5TexpS E
0

t

M ~ t8!dt8D d~0!. ~13!

Then, the Lyapunov exponent is calculated from

l5 lim
t̂→`

1

t̂
ln@ ud~ t !u/ud~0!u#. ~14!

In actual computation,t̂ is the computing time over which
the averages are taken. Usually the data for the first one-t
of total running time are discarded. The Lyapunov expone
can be orderedl1>l2>•••>l6N and if the system is er
godic, the exponents are independent of the initial ph
point G(0) and the initial phase-space separationd(0).

We consider here a system ofN518 interacting diatomic
molecules moving in a square periodic box. The side len
of the periodic square box is 6s. The initial arrangement o
the molecules are 336 with the molecular axes parallel t
thex axis so that the initial rotational angles are all zero. T
reduced molecular number densityn* 5Ns2/V is 0.5 for
both model potentials. Since the molecular shape depend
the anisotropy parameterd/s, we define the anisotropy
dependent density parameter asnd5Ns(s1d)/V, which is,
roughly speaking, the ratio of the occupied volume to
total. nd becomes equal ton* for isotropic particles. We
varied the anisotropy parameter from 1023 to 1.0 and exam-
l
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ined the corresponding variation of the Lyapunov spectru
A fourth-order Runge-Kutta method with a reduced time s
Dt50.001 was used for the numerical integration. At ea
time step, the atomic coordinates on a molecule are obta
from the center-of-mass coordinates and the rotational a
according to the coordinate transformation equation~4!.
They are used to evaluate the potential energy and he
forces. The well-known algorithms for calculation of th
Lyapunov exponents include the classical method propo
by Wolf et al. @14#, and its conceptual refinement develop
by Hoover, Posch, and Bestiale@1# and independently by
Goldhirsch, Sulem, and Orszag@15#. Though the constrained
orthonormal-vector method developed by Hooveret al. is
conceptually useful for the systems having rotational degr
of freedom, we used here the classical Benettin meth
which requires continuous reorthonomalization to avoid
extensive vector-matrix operations. Gram-Schmidt re
thonormalization was carried out after each time step.

III. RESULTS AND DISCUSSION

In order to compare our results with those calculated fr
the Lagrange multiplier method@13#, identical thermody-
namic systems, having the same thermodynamic nume
values within a few percent of the numerical fluctuatio
were generated independently by us and Borzsa´k @16#. The
agreement between the two approaches is within a few
cent error for the maximum Lyapunov exponentl1 and the
Kolmogorov entropyhK for large bond lengths. However
they failed to agree for the relatively short bond lengths. T
discrepancy seems to be due to the numerical errors in
calculation of the Lagrange multipliers for small bond leng
due to the limited precision of a computer@16#.

The Lagrange multiplier method requires a severe red
tion of the integration time stepDt to obtain the same accu
racy for small bond lengths. Otherwise, the system drifts
the numerical integration progresses. The time step of
Lagrange multiplier method was reduced to 0.0003 to
four digits of overall accuracy in the total energy for th
bond lengthd50.2. However, our method achieved the sam
level of accuracy withDt50.001. Accordingly, our method
decreased the computer time by a factor of three to calcu
the Lyapunov exponents ford50.2. Moreover, our method
is easier to program and debug because of its simple st
ture.
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TABLE II. Thermodynamic parameters characterizing the microcanonical 18 body Weeks-Cha
Anderson potential system studied in Fig. 2. All quantities are given in reduced units.nd is the anisotropy-
dependent density,K is the kinetic energy,F is the potential energy,E is the total energy,T is the tempera-

ture, andTa is the temperature of thea component.t̂ is the time for which the trajectory was followed afte
the decay of transients.lmax is the maximum Lyapunov exponent.hk5(l.0l is the sum over all positive
exponents.

Bond length d50.001 d50.2 d50.5 d50.6 d50.7 d50.8 d51.0

nd 0.5005 0.6 0.75 0.8 0.85 0.9 1.0
^K&a 22.87 34.68 33.00 35.47 35.35 33.65 35.56
^F& 2.69 4.81 10.27 14.19 19.74 25.68 42.22
E 25.56 39.48 43.27 49.67 55.09 59.33 77.78
kBT 1.27 1.93 1.83 1.97 1.96 1.87 1.98
kBTx 0.63 0.63 0.60 0.62 0.64 0.63 0.71
kBTy 0.64 0.63 0.60 0.69 0.65 0.61 0.61
kBTV 0.00 0.66 0.64 0.66 0.67 0.63 0.66

t̂ 1000 1000 1000 1000 1000 1000 1000

lmax 3.21 4.71 4.18 4.14 4.12 3.84 3.16
hk 84.12 129.88 128.19 122.88 113.89 96.29 72.31

aCenter of mass velocity is subtracted.
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Table I shows the smallest positive exponent (l51) and
three vanishing~nonnegative! exponents (l52,l53,l54) for
the seven bond lengths,d/s, equal to 0.001, 0.2, 0.5, 0.6
0.7, 0.8, and 1.0. The Weeks-Chandler-Anderson results
placed on the left side and Hoover potential results on
right side in the parenthesis. All quantities are given in
duced units. The thermodynamic information of the cor
sponding systems are given in Table II and Table III, resp
tively. These tables show that the numerical values of
Lyapunov exponents converge well in the simulation. As c
be seen from Table I, our method produces stable nume
results even for extremely short bond lengths.

Figure 2 summarizes the positive branches of the
Lyapunov spectra for the Weeks-Chandler-Anderson po
tial. Due to the Smale pairing symmetry for symplectic sy
tems, the negative branch is obtained by reversing the sig
the positive branch. The indexl numbers the exponents
re
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c-
e
n
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-
of

Throughout the simulations we use a microcanonical sys
that conserves the total energyE. During the first 200 or 250
time units, the velocities are rescaled to keep the kine
energy per molecule equal to 2, and 2/3 for each translatio
and rotational degree of freedom. After that, the system
relaxed and the data for the first 500 time units are discard
The presented data are ones averaged over the next
time units. During the relaxation the equipartition and to
kinetic energy are deviated from the targeted value sligh

In order to show the numerical values together with r
evant thermodynamic information for the states consider
the results of the maximum Lyapunov exponentsl1 and the
Kolmogorov entropyhk are summarized in Table II. As ca
be seen in Table II the maximum Lyapunov exponent a
the Kolmogorov entropy depend on the anisotrop
dependent density parameternd. The maximum exponentl1
and the Kolmogorov entropyhk decrease as the densitynd
ential

3

TABLE III. Thermodynamic parameters characterizing the microcanonical 18 body Hoover pot
system studied in Fig. 3. All quantities are given in reduced units.nd is the density,K is the kinetic energy,
F is the potential energy,E is the total energy,T is the temperature, andTa is the temperature of thea

component.t̂ is the time for which the trajectory was followed after the decay of transients.lmax is the
maximum Lyapunov exponent.hk5(l.0l is the sum over all positive exponents.

Bond length d50.001 d50.2 d50.5 d50.6 d50.7 d50.8 d51.0

nd 0.5005 0.6 0.75 0.8 0.85 0.9 1.0
^K&a 24.57 35.80 36.69 35.48 38.12 33.30 35.65
^F& 1.94 3.14 6.07 7.22 9.52 10.09 15.38
E 26.51 38.94 42.77 42.70 47.64 43.39 51.03
kBT 1.37 1.99 2.04 1.97 2.12 1.85 1.98
kBTx 0.68 0.65 0.67 0.64 0.69 0.61 0.65
kBTy 0.69 0.65 0.66 0.65 0.69 0.61 0.67
kBTV 0.00 0.69 0.70 0.68 0.74 0.64 0.66

t̂ 1000 1000 1000 1000 1000 1000 1000

lmax 2.74 3.64 3.54 3.46 3.56 3.40 3.45
hk 73.16 101.35 114.38 113.66 116.13 110.48 104.8

aCenter of mass velocity is subtracted.
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increases. However, the Kolmogorov entropy reduces
relatively small value at solid region just as in the case
simple fluid-solid transition@17#.

The positive branches of the full Lyapunov spectra for
Hoover potential are shown in Fig. 3. The simulation pro
dure to calculate these data is the same as that used fo
Weeks-Chandler-Anderson potential. The numerical val
of the maximum Lyapunov exponentsl1 and the Kolmog-
orov entropyhk are summarized in Table III together wit
relevant thermodynamic information on the states.

Due to the same repulsive nature of the potential,
overall trends of the numerical values look very similar. F
both potentials, the Lyapunov spectra according to bo
length show local maxima atd50.7, which corresponds to
the anisotropy-dependent densitynd50.85, around the phas
transition region for the case of simple fluids@17#, but they
show different patterns beyond the point. Atd51.0, the
Hoover potential, which has a relatively shorter interact
range than Weeks-Chandler-Anderson potential, still show
fluidlike Lyapunov spectrum, whereas Weeks-Chand
Anderson potential shows typical pattern of solidlike one.
inspection of the orientational correlation function, defin
as C(t)5^cos@Q(t)2Q(0)#&, also confirms that the system
with Hoover potential is fluidlike atd51.0. This is attributed
to relatively larger effective free volume per molecule
lowed in the case of Hoover potential at the same dens
The interaction range seems to affect also the system po
tial energy, the maximum Lyapunov exponent, and the K
mogorov entropy for all bond lengths. It is interesting th
the Kolmogorov entropy, a global measure of the rate w
which information is generated by the dynamics, stays
relatively high values for the dense region, as shown in Ta
III. For both potential systems, the number densityn* 50.5
is still large enough to keep the rototranslational coupling
shown in the case of smallest bond lengthd50.001 in both
figures.

IV. CONCLUSIONS

We have developed a stable and effective method for
study of Lyapunov instabilities in two-dimensional rigid d
atomic molecular systems with soft potentials. We first co

FIG. 2. Anisotropy dependence for the positive branch of
Lyapunov spectrum for the 18 body Weeks-Chandler-Anderson
tential system at number densityn* 50.5. d is given in the unit of
diameters, andl in units of (ms2)1/2. The exponents are define
at integer indexesl only.
to
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the
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pared our results with ones calculated by the Lagrange m
tiplier method. The two results are consistent with each ot
for larged. But they fail to agree asd decreases, which is du
to the numerical instability associated with the computat
of Lagrange multiplier, while our method shows reliable r
sults even for the extremely smalld. The numerical instabil-
ity associated with the Lagrangian multiplier method can
reduced by decreasing the time stepDt to be sufficiently
small, which may cause the computing time to increase by
order of magnitude larger.

We find that the system with Weeks-Chandler-Anders
potential approaches, solidlike state as the bond length
crease as large asd51.0. On the other hand, that wit
Hoover potential still remains at fluidlike state for the sam
bond length. This is due to the difference between the in
action ranges of the two potentials. Hoover potential h
shorter interaction range than Weeks-Chandler-Anderson
tential, so it allows larger free volume per molecule for t
same density.

Physical transition to uncoupled states between tran
tional and rotational motions can not be observed at suc
high number density,n* 50.5, even thoughd is reduced to
0.001. Therefore, molecular dynamic simulation at low de
sity is needed to study the mixing between these qualitiv
different degrees of freedom and its influence on the
Lyapunov spectrum. Work investigating the Lyapunov exp
nents and their physical meaning for many different types
soft interacting potentials having attractive part, are now
progress.
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