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Lyapunov instability of rigid diatomic molecules via diatomic potential molecular dynamics
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We develop a molecular dynamic method to evaluate the full Lyapunov spectrum for two-dimensonal fluids
composed of rigid diatomic molecules. The Lyapunov spectra are obtained for 18 rigid diatomic molecules for
various bond lengthd(10 3<d=<1.0) in two dimensions with periodic boundary conditions, and interacting
with Hoover and Weeks-Chandler-Anderson short-range repulsive forces. The general trends and characteristic
features of the Lyapunov spectra are examined for both potentials. Our results are compared with those
obtained from |. Borzdaet al. [Phys. Rev. B53, 3694 (1996], whose model uses the Lagrange multiplier
method.[S1063-651X98)06612-4

PACS numbdss): 05.45+b

I. INTRODUCTION anovig Posch, and Hoover 1] studied the physical transi-
tion from uncoupled motions between translation and rota-
The spectrum of Lyapunov exponents describes the meation to coupled states. BorasaPosch, and Barany4il3]
exponential rates of divergence and convergence of neigtevaluated the spectra of Lyapunov exponents for rigid di-
boring trajectories in phase space, and thus provides usefatomic molecules with Weeks-Chandler-Anderson repulsive
information characterizing the degree of chaos present in potential. They performed simulations for rigid homonuclear
dynamical system. During the past decade, Lyapunov specti@iatomic molecules with two interaction sites separated by a
for simple fluids have been investigated thoroughly througtdistanced along the molecular axis, and interacting with the
numerical simulations and theoretical studigs6]. Progress repulsive Weeks-Chandler-Anderson potential. Their mo-
has been made to the point that the second law of thermodyecular dynamics simulation model for diatomic molecules
namics and paradoxical macroscopic irreversibility can bavas a straightforward extension of the monoatomic simula-
explained with these quantiti¢3,8]. Furthermore, their re- tions augmented with constraint forces keeping the bond
lation to transport coefficients offers a new basis for describtengthd for each molecule fixed. However, due to unavoid-
ing irreversible processept]. They are characterized in able computer-precision errors, each bond lenptreviates
terms of a set of exponenfs;},i=1,...,8N, ordered from from the “fixed” value as the numerical integration
the largest to the smallest. The largest expongrdescribes progresses. The propagation of a computational error could
the rate of growth of trajectory separation in phase spacehbe reduced by making the time steyi sufficiently small.
The sum of the largest two exponents+ \,, gives the rate  But this procedure makes the computation inefficient. Al-
of growth of area defined by three moving trajectories. Fi-though their model was able to explain many interesting
nally, the sum of the firsh exponentsX{,\;, indicates the properties of diatomic molecular systems, the development
rate of expansion or contraction in phase-space objectsf a more general model for diatomic systems is required to
spanned by degrees of freedom. The Kolmogorov entropy, study the systems with both repulsive and attractive poten-
hy==\,=0\, given by the sum of the non-negative exponentdtials and to extend the systems of nonequilibrium diatomic
[9], describes the rate of divergence of the coarse-grainefiuids.
phase volume. The Lyapunov dimension, following the con- In the present study, we calculate the Lyapunov spectra
jecture of Kaplan and York8], is a lower bound on the for Hoover and Weeks-Chandler-Anderson repulsive di-
fractal dimension of the associated strange attractor of thatomic potentials. As suggested in the term *“rigid di-
chaotic system. atomic,” the position, rotational angle between the separa-
Rigid diatomic molecules are often described by hardtion vector of molecular axis with an arbitrary fixed direction
dumbbells in shape, interacting with the so-called diatomiof the plane, and their conjugate momeffa®,P,Pg} pro-
potential[10]. Anisotropic fluids reflect the physical transi- vide the full representation of the states of the system. We
tion from uncoupled translational and rotational motions touse the Lagrangian formalism to derive the classical motion
fully coupled rototranstional stat¢41]. Compared with the equationsL =K—®, whereK is the kinetic energy an®
exhaustive studies on the Lyapunov instability for mono-the potential energy. For a two-dimensional rigid diatomic
atomic molecular dynamics, those for the diatomic moleculasystem, the kinetic energl{ depends on each molecule’s
model have been rare. Dellago and Posch studied theenter-of-mass velocity and its angular velocity. The total
Lyapunov instability associated with the pure orientationalintermolecular potential energp is taken to be pairwise
order-disorder transition for the extend®d model both in  additive of interactions between the sites on different mol-
equilibrium and nonequilibrium steady stafgl?]. For the ecules separated by a distarrcdn Sec. Il we describe our
hard dumbbells of two-dimensional hard disk fluids, Mil- diatomic potential model and derive the motion equations
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gular coordinate, respectively. Then, the positions of the two
atoms belonging to thith molecule are

rx=R—(—1)XS, 4

wherei=1,2,... N andk=1,2.r is the Cartesian coordi-
nates k,y)! of each site andR is the corresponding mol-

FIG. 1. Diatomic potential model used to simulate homonuclearecyle’s center of mass vectoX,(Y)t. Sis a column vector
diatomic fluids. The four pair interactions between neighboring\yritten as[cos@®)),sin(@;)].. Superscript means the matrix

molecules are indicated by dotted lines. For the first moleddle, transpositionl is the d/2) times 2x 2 identity matrix. Then
represents the position of the center of m&&sand P, the atomic the bond lengthd for each moleculed2=(r- —r 2)2 is'
positions and their interaction centers for the point mass atoms. Thﬁaturally fixed without any constraint W2

same with primes, for the second molecule. The molecular orienta- The kinetic energy of the two-dimensional system is the

tion angles are defined iy, and®,, respectively, measured rela- o .\ ot 5 transiational part and a rotational part, and is writ-
tive to the vector connecting the centers of mass with some arbi:

trary direction. ten as

N
and their linearized motions for the evaluation of the K=> [R?+(d/2)?02]. (5)
Lyapunov exponents. Our results are presented and dis- i=1

cussed in Sec. lll. The conclusion follows in Sec. IV. ) )
The potential energy is

II. DESCRIPTION OF THE MODEL N
=1

Simulations were performed for two-dimensional classi- q>_i2 JE, Vi - ©)
cal systems consisting of rigid homonuclear diatomic mol-
ecules in a volum#/ and with periodic boundary conditions. We denote byF; and N; the total force and the total
Each molecule consists of two homonuclear atoms, eactorque, respectively, acting on the moleculdue to all the
massm, separated by a rigid distandealong the molecular other interacting molecules. The equations of motion are
axis. The interaction between any given pair of moleciles ] ] ] )
andj is characterized by the diatomic potentia| [10]: {Ri=Pi/2; 0;=Pg,/l; Pi=F;; Pe=N}, (7)

4 wherel is the moment of inertia. We note that, extending our
i :nzl é(rn), @ method, a flexible diatomic molecular system between two
sites can be described by merely adding a restoring potential

where ¢(r) is a pairwise potential. The, are the distances in Eg. (1). We also note that nonequilibrium steady states
between the center-of-force associated with the nonbondetftn be obtained by treating temperature and heat reservoirs
atoms of any two molecules. Here we consider the following®XPlicitly in the equations of motiof?). o
short-range purely repulsive soft potentials (a) the For the evaluation of the Lyapunov exponents it is useful
Weeks-Chandler-Anderson potential to resemble the hartP represent the state of the system by tié-dimensional
sphere model but no second derivative at the cutoff distancstate vector I'={X;,Y;,0;,X;,Y;,0;},i=1,... N. The
[2], equation of motion for the state vectb(t) is conveniently
written as an autonomous system of the first-order differen-

tial tions,
+e <2y equations

o(r)= 2 I'(t)=G((1)), )

0, r>21/60',
where I'(t) refers to a point in phase space. Its solution
where =28 is the location of the minimum of the defines a flowl’(t)=®(I"(0)) in phase space. We consider
Lenard-Jones potentialp) the Hoover potential with the two trajectories separated initially byI"(0) having a vector
cutoff radius,r =, at which the first three derivatives van- ©f Norms:

ish[3], I''(0)=T(0)+ 8T(0). )
214
1005[1—(—) } <o From this equation we can define a finite-length tangent
@(r)= o |’ (3)  vector att=0,
0, r=o.  T'(0)-T(0)
. . . , . 6(0)=Im————, (10

Without loss of generality, reduced units are used in this 50 S
paper for simple expression, for whieh o, and the atomic
massm (molecular mass @) are unity. associated with an initial perturbatidn’(0)—I'(0) of the

Figure 1 shows a schematic representation of the diatomieference trajectory in phase space. As time goes on, this
potential model in two dimension®; and ®; denote the perturbation develops intd'’'(t)—I'(t) and the associated
position vector of théth molecular center of mass and an- tangent vector becomes
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TABLE I. The smallest positive Lyapunov exponerd; and three vanishingnonnegativi Lyapunov
exponents Xs»,\53,A54) for the seven bond lengthd/o. Weeks-Chandler-Anderson results are placed on
the left sides and Hoover potential results on the right sides in the parenthesis. All quantities are given in
reduced units. The thermodynamic information of the corresponding systems appears in Table Il and Table

Ill, respectively.
Exponents number 51 5o Ns3 N5y
d=0.001 (0.327, 0.208 (0.014, 0.001 (0.000, 0.00D (0.000, 0.00D
d=0.2 (0.477, 0.493 (0.009, 0.002 (0.000, 0.00D (0.000, 0.00D
d=0.5 (0.252, 0.44% (0.005, 0.002 (0.000, 0.00D (0.000, 0.00D
d=0.6 (0.180, 0.382 (0.012, 0.001 (0.000, 0.00D (0.000, 0.00D
d=0.7 (0.113, 0.312 (0.004, 0.001L (0.000, 0.00D (0.008, 0.00D
d=0.8 (0.078, 0.243 (0.013, 0.002 (0.000, 0.00D (0.000, 0.00D
d=1.0 (0.040, 0.17D (0.000, 0.00D (0.000, 0.00p (0.005, 0.00D
CT')-T®) ined the corresponding variation of the Lyapunov spectrum.
o(t)=lm—mr—. (1) Afourth-order Runge-Kutta method with a reduced time step

s=0 At=0.001 was used for the numerical integration. At each
time step, the atomic coordinates on a molecule are obtained
ffrom the center-of-mass coordinates and the rotational angle
according to the coordinate transformation equatidi
They are used to evaluate the potential energy and hence
Sorces. The well-known algorithms for calculation of the
S(f_yapunov exponents include the classical method proposed
by Wolf et al.[14], and its conceptual refinement developed
by Hoover, Posch, and Bestial&] and independently by
SO P Goldhirsch, Sulem, and Orszat5]. Though the constrained
(1) =MI'(1)a(t) + O], (12 orthonormal-vector method developed by Hoowtral. is

where M(I')=[4G(I')/dT'] is the stability matrix. It is a conceptually useful for the systems having rotational degrees

local matrix, depending on the phase pdintwith the time of freedom, we used here the classical Benettin method,
ordering op’eratorT the formal solutions(t) can be ex- which requires continuous reorthonomalization to avoid the

pressed as extensive vector-matrix operations. Gram-Schmidt reor-
thonormalization was carried out after each time step.

The stability of the reference trajectory due to the initial
infinitesmal perturbation is determined by this change o
length of the vectos(t) at timet. Consequentlyd(t) may
be viewed as a vector comoving and corotating with th
phase flow in the immediate neighborhood of the pha
point. The equations of motion fa%(t) are obtained by lin-
earizing the original motion equatior(g),

t
5(t)_TeXp( fOM(t ydt )5(0)' (13 Ill. RESULTS AND DISCUSSION
In order to compare our results with those calculated from
the Lagrange multiplier methofi13], identical thermody-
1 namic systems, having the same thermodynamic numerical
A= 1lim = In[| 8(1)|/] 8(0)|]. (14) values within a few percent of the numerical fluctuation,
fow t were generated independently by us and BdeZ4#). The
R agreement between the two approaches is within a few per-
In actual computationt is the computing time over which cent error for the maximum Lyapunov exponantand the
the averages are taken. Usually the data for the first one-thirdolmogorov entropyhy for large bond lengths. However,
of total running time are discarded. The Lyapunov exponentshey failed to agree for the relatively short bond lengths. The
can be ordered ;=\,=---=\gy and if the system is er- discrepancy seems to be due to the numerical errors in the
godic, the exponents are independent of the initial phasealculation of the Lagrange multipliers for small bond length
point I'(0) and the initial phase-space separat&jf). due to the limited precision of a compufd6].
We consider here a system NMf=18 interacting diatomic The Lagrange multiplier method requires a severe reduc-
molecules moving in a square periodic box. The side lengthion of the integration time stefit to obtain the same accu-
of the periodic square box isc6 The initial arrangement of racy for small bond lengths. Otherwise, the system drifts as
the molecules are 86 with the molecular axes parallel to the numerical integration progresses. The time step of the
thex axis so that the initial rotational angles are all zero. TheLagrange multiplier method was reduced to 0.0003 to get
reduced molecular number density =No?/V is 0.5 for  four digits of overall accuracy in the total energy for the
both model potentials. Since the molecular shape depends drond lengthd=0.2. However, our method achieved the same
the anisotropy parametad/o, we define the anisotropy- level of accuracy withAt=0.001. Accordingly, our method
dependent density parameterrdls=No (o +d)/V, whichis,  decreased the computer time by a factor of three to calculate
roughly speaking, the ratio of the occupied volume to thethe Lyapunov exponents fat=0.2. Moreover, our method
total. n¢ becomes equal to* for isotropic particles. We is easier to program and debug because of its simple struc-
varied the anisotropy parameter from £to 1.0 and exam- ture.

Then, the Lyapunov exponent is calculated from
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TABLE II. Thermodynamic parameters characterizing the microcanonical 18 body Weeks-Chandler-
Anderson potential system studied in Fig. 2. All quantities are given in reduced nfitsthe anisotropy-
dependent densitys is the kinetic energy is the potential energy is the total energyT is the tempera-
ture, andT , is the temperature of the componentt is the time for which the trajectory was followed after
the decay of transient&.,,« IS the maximum Lyapunov exponetit,==, -\ is the sum over all positive

exponents.

Bond length d=0.001 d=0.2 d=0.5 d=0.6 d=0.7 d=0.8 d=1.0

nd 0.5005 0.6 0.75 0.8 0.85 0.9 1.0
(K)2 22.87 34.68 33.00 35.47 35.35 33.65 35.56
(D) 2.69 4.81 10.27 14.19 19.74 25.68 42.22
E 25.56 39.48 43.27 49.67 55.09 59.33 77.78
kgT 1.27 1.93 1.83 1.97 1.96 1.87 1.98
kgTy 0.63 0.63 0.60 0.62 0.64 0.63 0.71
keTy 0.64 0.63 0.60 0.69 0.65 0.61 0.61
kgTq 0.00 0.66 0.64 0.66 0.67 0.63 0.66

i 1000 1000 1000 1000 1000 1000 1000
Nmax 3.21 4.71 4.18 4.14 4.12 3.84 3.16
hy 84.12 129.88 128.19 122.88 113.89 96.29 72.31

&Center of mass velocity is subtracted.

Table | shows the smallest positive exponent,§ and  Throughout the simulations we use a microcanonical system
three vanishingnonnegative exponents Xs,,\s3, 54 for  that conserves the total enerByDuring the first 200 or 250
the seven bond lengthd/o, equal to 0.001, 0.2, 0.5, 0.6, time units, the velocities are rescaled to keep the kinetic
0.7, 0.8, and 1.0. The Weeks-Chandler-Anderson results agnergy per molecule equal to 2, and 2/3 for each translational
placed on the left side and Hoover potential results on thend rotational degree of freedom. After that, the system is
right side in the parenthesis. All quantities are given in re—relaxed and the data for the first 500 time units are discarded.
duced units. The thermodynamic information of the corre-The presented data are ones averaged over the next 1000
sponding systems are given in Table Il and Table IIl, respectime units. During the relaxation the equipartition and total
tively. These tables show that the numerical values of théinetic energy are deviated from the targeted value slightly.
Lyapunov exponents converge well in the simulation. As can In order to show the numerical values together with rel-
be seen from Table I, our method produces stable numericavant thermodynamic information for the states considered,
results even for extremely short bond lengths. the results of the maximum Lyapunov exponexisand the

Figure 2 summarizes the positive branches of the fullKolmogorov entropyh, are summarized in Table Il. As can
Lyapunov spectra for the Weeks-Chandler-Anderson poterbe seen in Table Il the maximum Lyapunov exponent and
tial. Due to the Smale pairing symmetry for symplectic sys-the Kolmogorov entropy depend on the anisotropy-
tems, the negative branch is obtained by reversing the sign afependent density parametet. The maximum exponent;
the positive branch. The indek numbers the exponents. and the Kolmogorov entroplp, decrease as the density

TABLE Ill. Thermodynamic parameters characterizing the microcanonical 18 body Hoover potential
system studied in Fig. 3. All quantities are given in reduced uni{ss the densityK is the kinetic energy,
® is the potential energyk is the total energyT is the temperature, andl, is the temperature of the
componenti is the time for which the trajectory was followed after the decay of transiants, is the
maximum Lyapunov exponenty, =3, - o\ is the sum over all positive exponents.

Bond length d=0.001 d=02 d=05 d=06 d=07 d=08 d=1.0

nd 0.5005 0.6 0.75 0.8 0.85 0.9 1.0
(K)? 24.57 35.80 36.69 35.48 38.12 33.30 35.65
(@) 1.94 3.14 6.07 7.22 9.52 10.09 15.38
E 26.51 38.94 42.77 42.70 47.64 43.39 51.03
keT 1.37 1.99 2.04 1.97 2.12 1.85 1.98
ke T 0.68 0.65 0.67 0.64 0.69 0.61 0.65
keT, 0.69 0.65 0.66 0.65 0.69 0.61 0.67
keTq 0.00 0.69 0.70 0.68 0.74 0.64 0.66
i 1000 1000 1000 1000 1000 1000 1000
N max 2.74 3.64 3.54 3.46 3.56 3.40 3.45
hy 73.16 101.35  114.38  113.66  116.13  110.48  104.83

&Center of mass velocity is subtracted.
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FIG. 2. Anisotropy dependence for the positive branch of the
Lyapunov spectrum for the 18 body Weeks-Chandler-Anderson po- G, 3. Anisotropy dependence for the positive branch of the
tential system at number density =0.5.d is given in the unit of | yanunov spectrum for the 18 body Hoover potential system at
diametero, and\ in units of (ma®)% The exponents are defined | mber density* =0.5.d is given in the unit of diametar, andx
at integer indexes only. in units of (Ma?)Y2. The exponents are defined for integer indexes

| only.
increases. However, the Kolmogorov entropy reduces to

relatively small value at solid region just as in the case of ared our results with ones calculated by the Lagranae mul-
simple fluid-solid transitiorf17]. P y grang

. tiplier method. The two results are consistent with each other
The positive branches of the full Lyapunov spectra for thefor laraed. But thev fail to agree as decreases. which is due
Hoover potential are shown in Fig. 3. The simulation proce- ged. y 9 '

dure to calculate these data is the same as that used for tﬁ%the numerical _m:;tabﬂﬂy_ associated with the computation
of Lagrange multiplier, while our method shows reliable re-

Weeks-Chandler-Anderson potential. The numerical values

. Sults even for the extremely small The numerical instabil-
of the maximum Lyapunov exponents and the Kolmog- ; . : .
. . ... ity associated with the Lagrangian multiplier method can be
orov entropyh, are summarized in Table Il together with

relevant thermodynamic information on the states reduced by decreasing the time stap to be sufficiently
y . o small, which may cause the computing time to increase by an
Due to the same repulsive nature of the potential, the .
) L order of magnitude larger.
overall trends of the numerical values look very similar. For ) .
. ; We find that the system with Weeks-Chandler-Anderson
both potentials, the Lyapunov spectra according to bond . - .
. a . potential approaches, solidlike state as the bond length in-
length show local maxima at=0.7, which corresponds to

. il crease as large ad=1.0. On the other hand, that with
the a_msotropy—dependent den _.0'85’ ar_ound the phase Hoover potential still remains at fluidlike state for the same
transition region for the case of simple fluifk7], but they

show different patterns beyond the point. At-1.0, the bond length. This is due to the difference between the inter-

. . ; ) . tion ran f the twi tentials. Hoover potential h
Hoover potential, which has a relatively shorter interaction’y o &nges ot Ihe o potentials. Tioover potential has

. : shorter interaction range than Weeks-Chandler-Anderson po-
range than Weeks-Chandler-Anderson potential, still shows fntial, so it allows larger free volume per molecule for the
fluidlike Lyapunov spectrum, whereas Weeks-Chandler- ’

. . s same density.
ﬁgﬂzg%mp;tiﬂga(l)ﬁ22‘{5éﬁgfig‘:g}g{gr?fficr)ll(':?ilékne %2%}23 Physical transition to uncoupled states between transla-
. ’ ional and rotational motion nn rv h
as C(t)=(cod0O(t)—0(0)]), also confirms that the system tional and rotational motions can not be observed at such a

: o o " o ; high number densityn* =0.5, even thoughl is reduced to
with Hoover potential is fluidlike adi=1.0. This is attributed 4 57 Therefore, molecular dynamic simulation at low den-
to relatively larger effective free volume per molecule al-

lowed in the case of Hoover potential at the same densit sity is needed to study the mixing between these qualitively

) . P Ydifferent degrees of freedom and its influence on the full
T_he interaction range seems to affect also the system pOte'ﬂyapunov spectrum. Work investigating the Lyapunov expo-
tial energy, the maximum Lyapunov exponent, and .the KOI'nents and their physical meaning for many different types of
mogorov entropy for all bond lengths. It is interesting that

the Kolmogorov entropy, a global measure of the rate wit soft interacting potentials having attractive part, are now in

which information is generated by the dynamics, stays a rogress.
relatively high values for the dense region, as shown in Table

[ll. For both potential systems, the number density=0.5 ACKNOWLEDGMENTS
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IV. CONCLUSIONS
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